

SAMPLE SIZE ESTIMATION

		Information needed	Formulas for Minimum Sample Size
I. Estimation			
	α	Type I - error	
1.1 Mean	μ	Population mean	1. Simple Random Sampling
	σ	Population standard deviation	1.1 Large size of population $n = \frac{z_{\alpha/2}^2 \sigma^2}{d^2}$
	x	Sample mean	1.2 Small size of population $n_f = \frac{n}{1 + \frac{n}{N}}$
	d	Maximum allowable error = $ \bar{x} - \mu $	2. Cluster sampling
	Deff.	Design Effect = $\left[\frac{s.e(\bar{x})_{cls}}{s.e(\bar{x})srs}\right]^2$	$n_{clus} = n_{srs} x Deff$
	N	Size of Population	n_{srs} = Sample size of Simple random sampling
1.2 Proportion	Р	Population proportion	1. Simple Random Sampling
	р	Sample proportion	1.1 Large size of population $n = \frac{z_{\alpha/2}^2 P(1-P)}{d^2}$
	d	Maximum allowable error = $ P - p $	1.1 Large size of population $n = \frac{m^2}{d^2}$ 1.2 Small size of population $n_f = \frac{n}{1 + \frac{n}{N}}$
	Deff.	Design Effect = $\left[\frac{s \cdot e(p)_{clus}}{s \cdot e(p) srs}\right]^2$	2. Cluster sampling
	N	Size of population	$n_{clus} = n_{srs} x Deff$
			n_{srs} = Sample size of Simple random sampling

TABLE : Formulas for Sample Size Estimation

	Information needed		Formulas for Minimum Sample Size	
II. Significant results				
	α	Type I - error		
	β	Type II - error		
2.1 Single mean	$\mu_0 - \mu_a$	Difference between μ_a mean under H _a , and		
		μ_0 mean under H _o	$(z_{\alpha} + z_{\beta})^2 \sigma^2$	
	σ	Standard deviation	$n = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu_0 - \mu_a)^2}$	
2.2 Single proportion	Po-Pa	Difference between Pa proportion under	$[z_{a}\sqrt{P_{0}(1-P_{0})} + z_{b}\sqrt{P_{a}(1-P_{a})}]^{2}$	
		H_a , and P_o proportion Ho	$n = \frac{\left[z_{\alpha}\sqrt{P_0(1-P_0)} + z_{\beta}\sqrt{P_a(1-P_a)}\right]^2}{(P_0 - P_a)^2}$	
2.3 Single rate	Р	Rate	$(z_{\alpha}+z_{\beta})^2 P$	
	Po	Rate under H _o	$n = \frac{(z_{\alpha} + z_{\beta})^2 P}{(P - P_0)^2}$	
			In this cases, n refers to the unit used for the	
			denominator of the rate person-year	
2.4 Comparisons of two	$\mu_1 - \mu_2$	Difference between means of two groups		
means		(effect size)	$(\ldots)^2 (-2 , \sigma_2^2)$	
	σ_1, σ_2	Standard deviations	$m = \frac{(z_{\alpha} + z_{\beta})^2 (\sigma_1^2 + \frac{\sigma_2^2}{c})}{(\mu_1 - \mu_2)^2}$	
	с	Ratio of the sample size of the two groups	$m = (\mu_1 - \mu_2)^2$	
		$c=n_2/n_1$ and $n_1=m$		
	n ₁ ,n ₂	Sample size of group 1 and of group 2		

		Information needed	Formulas for Minimum Sample Size	
2.5 Comparison of two Proportions	P ₁ - P ₂	Difference between proportions of two groups (effect size)	$\boxed{P_2(1-P_2)}$	
	с	Ratio of the sample size of the two groups $c=n_2/n_1$ and $n_1=m$	$m = \frac{\left[z_{\alpha}\sqrt{\frac{(c+1)}{c}P(1-P) + z_{\beta}}\sqrt{P_{1}(1-P_{1}) + \frac{P_{2}(1-P_{2})}{c}}\right]^{2}}{(P_{1}-P_{2})^{2}}$	
	n ₁ ,n ₂ P	Sample size of group 1 and of group 2 Combined proportions $P = (P_1 + cP_2)/(c + 1)$		
2.6 Comparison of two rates	P ₁ , P ₂ m	Rates of the two groups Sample size of each group	$m = \frac{(z_{\alpha} + z_{\beta})^2 (P_1 + P_2)}{(P_1 - P_2)^2}$ In this cases , m refers to the unit used for the denominator of the rate person-year	
2.7 Case-Control study	P ₁ P ₂ OR c P	Proportion of exposed in cases Proportion of exposed in control Odds Ratio = $\frac{P_1 / (1 - P_1)}{P_2 / (1 - P_2)}$ Ratio of the sample size of the two groups $c=n_2/n_1$ and $n_1=m$ Combined proportions $P = (P_1 + cP_2) / (c + 1)$	$m = \frac{\left[z_{\alpha}\sqrt{\frac{(c+1)}{c}P(1-P)} + z_{\beta}\sqrt{P_{1}(1-P_{1})} + \frac{P_{2}(1-P_{2})}{c}\right]^{2}}{(P_{1}-P_{2})^{2}}$	

	Information needed		Formulas for Minimum Sample Size	
2.8 Matched or Paired case	P ₀	Proportion under true null hypothesis, which is expected to be 0.5.	$(z_{\alpha/2} + 2z_{\beta}\sqrt{P_{\alpha}(1-P_{\alpha})}^{2})^{2}$	
	Pa	Proportion under true H _a (Proportion of discordant pairs of type A among discordant pairs)	$n = \frac{\left(z_{\alpha/2} + 2z_{\beta}\sqrt{P_a(1 - P_a)^2}\right)}{4P_d(P_a - 0.5)^2}$	
	P _d	Proportion of discordance pairs among all pairs number of pairs		
2.9 Cohort study	P ₁	Proportion of exposed in controls		
5	P ₂	Proportion of exposed in cases		
	RR	Risk Ratio $=P_2/P_1$	$\int \frac{(c+1)_{R(1-R)}}{(c+1)_{R(1-R)}} + z = \int \frac{P_{2}(1-P_{2})_{R(1-R)}}{P_{2}(1-P_{2})_{R(1-R)}} + z$	
	с	Ratio of the sample size of the two groups	$m = \frac{\left[z_{\alpha}\sqrt{\frac{(c+1)}{c}P(1-P) + z_{\beta}}\sqrt{P_{1}(1-P_{1}) + \frac{P_{2}(1-P_{2})}{c}}\right]^{2}}{(P_{1}-P_{2})^{2}}$	
		$c=n_2/n_1$ and $n_1=m$	$(P_1 - P_2)^2$	
	Р	Combined proportions		
		$P = (P_1 + cP_2) / (c + 1)$		

		Information needed	Formulas for Minimum Sample Size
2.10 Two incidence rates	P_0	$\frac{t_1}{(t_1+t_2)}$	
	P_1	$\frac{t_1 RR}{(t_1 RR + t_2)}$	
	т	Expected number of events in the two groups combined $= m_1 + m_2$	$m = \frac{\left[z_{\alpha/2}\sqrt{P_0(1-P_0)} + z_{\beta}\sqrt{P_a(1-P_a)}\right]^2}{\left(P_0 - P_a\right)^2}$
	m_1	Expected number of events in the 1st groups	$m = m_1 + m_2 = n_1 [1 - \exp(-ID_1 t_1^*)] + n_2 [1 - \exp(-ID_2 t_2^*)]$
		$=n_1[1 - \exp(-ID_1t_1^*)]$	
	<i>m</i> ₂	Expected number of events in the 2nd groups	Let $\frac{n_2}{n_1} = c$, $n_2 = cn_1$
		$=n_2[1 - \exp(-ID_2t_2^*)]$	
	<i>n</i> ₁ , <i>n</i> ₂	Number of subjects in the 1 st and 2 nd group	$n_{1} = \frac{m}{[1 - \exp(-ID_{1}t_{1}^{*})] + c [1 - \exp(-ID_{2}t_{2}^{*})]}$
	<i>t</i> ₁ , <i>t</i> ₂	Total number of person-years in the 1^{st} and 2^{nd} group	
	t_1^*, t_2^*	Average number of person-years in the 1 st and 2 nd group	
	ID_1, ID_2	Incidence density in the 1^{st} and 2^{nd} group under H_a	Example 14.16 P694 Rosner(2010)

	Information needed		Formulas for Minimum Sample Size	
2.11 Proportional Hazards Model	т	Expected total number of events over both groups $= n_1 P_E + n_2 P_C$	$m = \frac{1}{c} \left(\frac{cRR + 1}{RR - 1} \right) (z_{\alpha/2} + z_{\beta})^{2}$	
	n_1, n_2	Number of subjects in the 1 st and 2 nd group (E and C group)	$n_1 = \frac{cm}{(cP_E + P_C)}, n_2 = \frac{m}{(cP_E + P_C)}$	
	P_E	Probability of failure in group E over the maximum time period of the study (<i>t</i> years)		
	P_C	Probability of failure in group C over the maximum time period of the study (<i>t</i> years)	Example P735 Rosner(2010), 7 th ed.	